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Welcome to Java Foundations. This book is designed to serve as the primary 
resource for a two- or three-term introductory course sequence, ranging from 
the most basic programming concepts to the design and implementation of com-
plex data structures. This unified approach makes the important introductory 
sequence more cohesive and accessible for students.

We’ve borrowed the best elements from the industry-leading text Java Software 
Solutions for the introductory material, reworked to complement the design and 
vision of the overall text. For example, instead of having graphics sections spread 
throughout many chapters, the coverage of graphical user interfaces is accom-
plished in a well-organized chapter of its own.

In the later chapters, the exploration of collections and data structures is mod-
eled after the coverage in Java Software Structures, but has been reworked to flow 
cleanly from the introductory material. The result is a comprehensive, cohesive, 
and seamless exploration of programming concepts.

New in the Fifth Edition
We appreciate the feedback we’ve received about this book and are pleased 
that it continues to serve so well as an introductory text. The changes made 
in this edition build on the strong pedagogy established by previous editions 
while updating crucial areas.

The biggest change in this edition is the overhaul of the graphical content to 
fully embrace the JavaFX platform, which has replaced Swing as the supported 
technology for graphics and Graphical User Interfaces (GUIs) in Java. The previous 
edition focused on Swing and had an introduction to JavaFX. The time has come 
to switch over completely to the new approach, which simplifies GUI development 
and provides better opportunities to discuss object-oriented programming.

The changes in this edition include:

•	 A brand new Chapter 6 on developing GUIs using JavaFX.
•	 A new Appendix F that discusses the rendering of graphics using JavaFX.
•	 A new Appendix G that explores the JavaFX Scene Builder, a drag-and-

drop application for developing graphical front ends.

Preface
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•	 Updated examples and discussions throughout the text.
•	 Updated end-of-chapter Programming Projects in several chapters.

In previous editions, we had established the following flow when discussing 
collections:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Use the collection to solve problems.

Explore implementation options
and efficiency issues.

Your feedback has indicated that this approach is working well and we have 
continued and reinforced its use. It clarifies the distinction between the way the 
Java API supports a particular collection and the way it might be implemented 
from scratch. It makes it easier for instructors to point out limitations of the API 
implementations in a compare-and-contrast fashion. This approach also allows 
an instructor, on a case-by-case basis, to simply introduce a collection without 
exploring implementation details if desired.

Chapter Breakdown
Chapter 1 (Introduction) introduces the Java programming language and the 
basics of program development. It contains an introduction to object-oriented 
development, including an overview of concepts and terminology. This chapter 
contains broad introductory material that can be covered while students become 
familiar with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used 
in a Java program and the use of expressions to perform calculations. It discusses 
the conversion of data from one type to another, and how to read input interac-
tively from the user with the help of the Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes 
and the objects that can be created from them. Classes and objects are used to 
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Packages, enumerated types, and wrapper classes are 
also discussed.

Chapter 4 (Conditionals and Loops) covers the use of Boolean expressions to 
make decisions. All related statements for conditionals and loops are discussed, 

A01_LEWI5976_05_SE_FM.indd   8 14/02/19   9:09 PM



	 PREFACE 	 ix

including the enhanced version of the for loop. The Scanner class is revisited for 
iterative input parsing and reading text files.

Chapter 5 (Writing Classes) explores the basic issues related to writing classes 
and methods. Topics include instance data, visibility, scope, method parame-
ters, and return types. Constructors, method design, static data, and method 
overloading are covered as well. Testing and debugging are now covered in this 
chapter as well.

Chapter 6 (Graphical User Interfaces) is an exploration of GUI processing us-
ing the JavaFX platform, focusing on controls, events, and event handlers. Several 
types of controls are discussed using numerous GUI examples. Mouse events, key-
board events, and layout panes are also explored.

Chapter 7 (Arrays) contains extensive coverage of arrays and array process-
ing. Topics include bounds checking, initializer lists, command-line arguments, 
variable-length parameter lists, and multidimensional arrays.

Chapter 8 (Inheritance) covers class derivations and associated concepts such as 
class hierarchies, overriding, and visibility. Strong emphasis is put on the proper 
use of inheritance and its role in software design.

Chapter 9 (Polymorphism) explores the concept of binding and how it relates 
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Design issues related to polymor-
phism are examined as well.

Chapter 10 (Exceptions) covers exception handling and the effects of uncaught 
exceptions. The try-catch statement is examined, as well as a discussion of ex-
ception propagation. The chapter also explores the use of exceptions when dealing 
with input and output, and examines an example that writes a text file.

Chapter 11 (Analysis of Algorithms) lays the foundation for determining the ef-
ficiency of an algorithm and explains the important criteria that allow a developer 
to compare one algorithm to another in proper ways. Our emphasis in this chapter 
is understanding the important concepts more than getting mired in heavy math 
or formality.

Chapter 12 (Introduction to Collections—Stacks) establishes the concept of a 
collection, stressing the need to separate the interface from the implementation. It 
also conceptually introduces a stack, then explores an array-based implementation 
of a stack.

Chapter 13 (Linked Structures—Stacks) discusses the use of references to create 
linked data structures. It explores the basic issues regarding the management of 
linked lists, and then defines an alternative implementation of a stack (introduced 
in Chapter 12) using an underlying linked data structure.

Chapter 14 (Queues) explores the concept and implementation of a first-in, 
first-out queue. The Java API Queue interface is discussed, as are linked and circu-
lar array implementations with Queue in code font.
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Chapter 15 (Lists) covers three types of lists: ordered, unordered, and indexed. 
These three types of lists are compared and contrasted, with discussion of the op-
erations that they share and those that are unique to each type. Inheritance is used 
appropriately in the design of the various types of lists, which are implemented 
using both array-based and linked representations.

Chapter 16 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion 
drives home the need to separate the iterator functionality from the details of any 
particular collection.

Chapter 17 (Recursion) is a general introduction to the concept of recursion 
and how recursive solutions can be elegant. It explores the implementation details 
of recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 18 (Searching and Sorting) discusses the linear and binary search al-
gorithms, as well as the algorithms for several sorts: selection sort, insertion sort, 
bubble sort, quick sort, and merge sort. Programming issues related to searching 
and sorting, such as using the Comparable interface as the basis of comparing 
objects, are stressed in this chapter. An application uses animation to demonstrate 
the efficiency of sorting algorithms. The comparator interface is examined and 
demonstrated as well.

Chapter 19 (Trees) provides an overview of trees, establishing key terminology 
and concepts. It discusses various implementation approaches and uses a binary 
tree to represent and evaluate an arithmetic expression.

Chapter 20 (Binary Search Trees) builds off of the basic concepts established 
in Chapter 10 to define a classic binary search tree. A linked implementation of a 
binary search tree is examined, followed by a discussion of how the balance in the 
tree nodes is key to its performance. That leads to exploring AVL and red/black 
implementations of binary search trees.

Chapter 21 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap 
sort is used as an example of its usefulness as well. Both linked and array-based 
implementations are explored.

Chapter 22 (Sets and Maps) explores these two types of collections and their 
importance to the Java Collections API.

Chapter 23 (Multi-way Search Trees) is a natural extension of the discussion of 
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are 
examined and implementation options are discussed.

Chapter 24 (Graphs) explores the concept of undirected and directed graphs 
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Chapter 25 (Databases) explores the concept of databases and their manage-
ment, and discusses the basics of SQL queries. It then explores the techniques for 
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establishing a connection between a Java program and a database, and the API 
used to interact with it.

Supplements
The following student resources are available for this book:

•	 Source code for all programs presented in the book
•	 VideoNotes that explore select topics from the book

Resources can be accessed at www.pearson.com/lewis

The following instructor resources can be found at Pearson Education’s Instructor 
Resource Center:

•	 Solutions for select exercises and programming projects in the book
•	 PowerPoint slides for the presentation of the book content
•	 Test bank

To obtain access, please visit www.pearsonhighered.com/irc or contact your local 
Pearson Education sales representative.
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1

1
This text is about writing well-designed software. We 

begin by examining a very basic Java program and using it 

to explore some initial programming concepts. We then lay 

the groundwork for software development on a larger scale, 

exploring the foundations of problem solving, the activi-

ties involved in software development, and the principles of 

object-oriented programming.

C H A P T E R  O B J E C T I V E S
■■ Introduce the Java programming language.

■■ Describe the steps involved in program compilation and execution.

■■ Explore the issues related to problem solving in general.

■■ Discuss the activities involved in the software development 
process.

■■ Present an overview of object-oriented principles.

Introduction 1
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2	 CHAPTER 1   Introduction

1.1  The Java Programming Language

A computer is made up of hardware and software. The hardware components of 
a computer system are the physical, tangible pieces that support the computing 
effort. They include chips, boxes, wires, keyboards, speakers, disks, cables, print-
ers, and so on. The hardware is essentially useless without instructions to tell it 
what to do. A program is a series of instructions that the hardware executes one 
after another. Programs are sometimes called applications. Software consists of 
programs and the data those programs use. Software is the intangible counterpart 
to the physical hardware components. Together, they form a tool that we can use 
to solve problems.

A program is written in a particular programming language that 
uses specific words and symbols to express the problem solution. A 
programming language defines a set of rules that determines exactly 
how a programmer can combine the words and symbols of the lan-
guage into programming statements, which are the instructions that 
are carried out when the program is executed.

Since the inception of computers, many programming languages have been  
created. We use the Java language in this text to demonstrate various programming 
concepts and techniques. Although our main goal is to learn these underlying soft-
ware development concepts, an important side effect will be to become proficient 
in the development of Java programs.

Java is a relatively new programming language compared to many others. It 
was developed in the early 1990s by James Gosling at Sun Microsystems. Java was 
introduced to the public in 1995 and has gained tremendous popularity since.

Java has undergone various changes since its creation. The most recent Java 
technology is generally referred to as the Java 2 Platform, which is organized into 
three major groups:

■■ Java 2 Platform, Standard Edition (J2SE)

■■ Java 2 Platform, Enterprise Edition (J2EE)

■■ Java 2 Platform, Micro Edition (J2ME)

This text focuses on the Standard Edition, which, as the name implies, is the 
mainstream version of the language and associated tools. Furthermore, this book is 
consistent with any recent versions of Java, through Java 11.

Some parts of early Java technologies have been deprecated, which means they 
are considered old-fashioned and should not be used. When it is important, we 
point out deprecated elements and discuss the preferred alternatives.

Java is an object-oriented programming language. Objects are the fundamen-
tal elements that make up a program. The principles of object-oriented software 

KEY CONCEPT
A computer system consists of 
hardware and software that work in 
concert to help us solve problems.
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development are the cornerstone of this text. We explore object-
oriented programming concepts later in this chapter and throughout 
the rest of the text.

The Java language is accompanied by a library of extra software 
that we can use when developing programs. This software is referred 
to as the Java API, which stands for Application Programmer Interfaces, or simply 
the standard class library. It provides the ability to create graphics, communicate 
over networks, and interact with databases, among many other features. The Java 
API is huge and quite versatile. Although we won’t be able to cover all aspects of the 
library, we will explore many of them.

Java is used in commercial environments all over the world. It is one of the 
fastest-growing programming technologies of all time. Thus it is not only a good 
language in which to learn programming concepts but also a practical language 
that will serve you well in the future.

A Java Program
Let’s look at a simple but complete Java program. The program in Listing 1.1 
prints two sentences to the screen. This particular program prints a quotation 
from Abraham Lincoln. The output is shown below the program listing.

All Java applications are similar in basic structure. Despite its small size and 
simple purpose, this program contains several important features. Let’s carefully 
dissect it and examine its pieces.

The first few lines of the program are comments, which start with the // sym-
bols and continue to the end of the line. Comments don’t affect what the pro-
gram does but are included to make the program easier to understand by humans. 
Programmers can and should include comments as needed throughout a program 
to clearly identify the purpose of the program and describe any special process-
ing. Any written comments or documents, including a user’s guide and technical 
references, are called documentation. Comments included in a program are called 
inline documentation.

The rest of the program is a class definition. This class is called 
Lincoln, although we could have named it just about anything we 
wished. The class definition runs from the first opening brace ({) to 
the final closing brace (}) on the last line of the program. All Java 
programs are defined using class definitions.

Inside the class definition are some more comments describing the purpose of 
the main method, which is defined directly below the comments. A method is a 
group of programming statements that is given a name. In this case, the name of 
the method is main and it contains only two programming statements. Like a class 
definition, a method is delimited by braces.

KEY CONCEPT
This text focuses on the principles of 
object-oriented programming.

KEY CONCEPT
Comments do not affect a program’s 
processing; instead, they serve to 
facilitate human comprehension.
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