

To my wife, Sharon, for everything.

– John

To my wonderful wife Susan, and our children, Grace, Anthony, Adam, Lily, EJ, and Peter IV.
Your continued love and support keep me going as always.

– Pete

To my loving wife, Melissa, for her support and encouragement.

– Joe

A01_LEWI5976_05_SE_FM.indd 5 14/02/19 9:09 PM

A01_LEWI5976_05_SE_FM.indd 6 14/02/19 9:09 PM

vii

Welcome to Java Foundations. This book is designed to serve as the primary
resource for a two- or three-term introductory course sequence, ranging from
the most basic programming concepts to the design and implementation of com-
plex data structures. This unified approach makes the important introductory
sequence more cohesive and accessible for students.

We’ve borrowed the best elements from the industry-leading text Java Software
Solutions for the introductory material, reworked to complement the design and
vision of the overall text. For example, instead of having graphics sections spread
throughout many chapters, the coverage of graphical user interfaces is accom-
plished in a well-organized chapter of its own.

In the later chapters, the exploration of collections and data structures is mod-
eled after the coverage in Java Software Structures, but has been reworked to flow
cleanly from the introductory material. The result is a comprehensive, cohesive,
and seamless exploration of programming concepts.

New in the Fifth Edition
We appreciate the feedback we’ve received about this book and are pleased
that it continues to serve so well as an introductory text. The changes made
in this edition build on the strong pedagogy established by previous editions
while updating crucial areas.

The biggest change in this edition is the overhaul of the graphical content to
fully embrace the JavaFX platform, which has replaced Swing as the supported
technology for graphics and Graphical User Interfaces (GUIs) in Java. The previous
edition focused on Swing and had an introduction to JavaFX. The time has come
to switch over completely to the new approach, which simplifies GUI development
and provides better opportunities to discuss object-oriented programming.

The changes in this edition include:

•	 A brand new Chapter 6 on developing GUIs using JavaFX.
•	 A new Appendix F that discusses the rendering of graphics using JavaFX.
•	 A new Appendix G that explores the JavaFX Scene Builder, a drag-and-

drop application for developing graphical front ends.

Preface

A01_LEWI5976_05_SE_FM.indd 7 14/02/19 9:09 PM

viii	 PREFACE

•	 Updated examples and discussions throughout the text.
•	 Updated end-of-chapter Programming Projects in several chapters.

In previous editions, we had established the following flow when discussing
collections:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Use the collection to solve problems.

Explore implementation options
and efficiency issues.

Your feedback has indicated that this approach is working well and we have
continued and reinforced its use. It clarifies the distinction between the way the
Java API supports a particular collection and the way it might be implemented
from scratch. It makes it easier for instructors to point out limitations of the API
implementations in a compare-and-contrast fashion. This approach also allows
an instructor, on a case-by-case basis, to simply introduce a collection without
exploring implementation details if desired.

Chapter Breakdown
Chapter 1 (Introduction) introduces the Java programming language and the
basics of program development. It contains an introduction to object-oriented
development, including an overview of concepts and terminology. This chapter
contains broad introductory material that can be covered while students become
familiar with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another, and how to read input interac-
tively from the user with the help of the Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Packages, enumerated types, and wrapper classes are
also discussed.

Chapter 4 (Conditionals and Loops) covers the use of Boolean expressions to
make decisions. All related statements for conditionals and loops are discussed,

A01_LEWI5976_05_SE_FM.indd 8 14/02/19 9:09 PM

	 PREFACE 	 ix

including the enhanced version of the for loop. The Scanner class is revisited for
iterative input parsing and reading text files.

Chapter 5 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parame-
ters, and return types. Constructors, method design, static data, and method
overloading are covered as well. Testing and debugging are now covered in this
chapter as well.

Chapter 6 (Graphical User Interfaces) is an exploration of GUI processing us-
ing the JavaFX platform, focusing on controls, events, and event handlers. Several
types of controls are discussed using numerous GUI examples. Mouse events, key-
board events, and layout panes are also explored.

Chapter 7 (Arrays) contains extensive coverage of arrays and array process-
ing. Topics include bounds checking, initializer lists, command-line arguments,
variable-length parameter lists, and multidimensional arrays.

Chapter 8 (Inheritance) covers class derivations and associated concepts such as
class hierarchies, overriding, and visibility. Strong emphasis is put on the proper
use of inheritance and its role in software design.

Chapter 9 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Design issues related to polymor-
phism are examined as well.

Chapter 10 (Exceptions) covers exception handling and the effects of uncaught
exceptions. The try-catch statement is examined, as well as a discussion of ex-
ception propagation. The chapter also explores the use of exceptions when dealing
with input and output, and examines an example that writes a text file.

Chapter 11 (Analysis of Algorithms) lays the foundation for determining the ef-
ficiency of an algorithm and explains the important criteria that allow a developer
to compare one algorithm to another in proper ways. Our emphasis in this chapter
is understanding the important concepts more than getting mired in heavy math
or formality.

Chapter 12 (Introduction to Collections—Stacks) establishes the concept of a
collection, stressing the need to separate the interface from the implementation. It
also conceptually introduces a stack, then explores an array-based implementation
of a stack.

Chapter 13 (Linked Structures—Stacks) discusses the use of references to create
linked data structures. It explores the basic issues regarding the management of
linked lists, and then defines an alternative implementation of a stack (introduced
in Chapter 12) using an underlying linked data structure.

Chapter 14 (Queues) explores the concept and implementation of a first-in,
first-out queue. The Java API Queue interface is discussed, as are linked and circu-
lar array implementations with Queue in code font.

A01_LEWI5976_05_SE_FM.indd 9 14/02/19 9:09 PM

x	 PREFACE

Chapter 15 (Lists) covers three types of lists: ordered, unordered, and indexed.
These three types of lists are compared and contrasted, with discussion of the op-
erations that they share and those that are unique to each type. Inheritance is used
appropriately in the design of the various types of lists, which are implemented
using both array-based and linked representations.

Chapter 16 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion
drives home the need to separate the iterator functionality from the details of any
particular collection.

Chapter 17 (Recursion) is a general introduction to the concept of recursion
and how recursive solutions can be elegant. It explores the implementation details
of recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 18 (Searching and Sorting) discusses the linear and binary search al-
gorithms, as well as the algorithms for several sorts: selection sort, insertion sort,
bubble sort, quick sort, and merge sort. Programming issues related to searching
and sorting, such as using the Comparable interface as the basis of comparing
objects, are stressed in this chapter. An application uses animation to demonstrate
the efficiency of sorting algorithms. The comparator interface is examined and
demonstrated as well.

Chapter 19 (Trees) provides an overview of trees, establishing key terminology
and concepts. It discusses various implementation approaches and uses a binary
tree to represent and evaluate an arithmetic expression.

Chapter 20 (Binary Search Trees) builds off of the basic concepts established
in Chapter 10 to define a classic binary search tree. A linked implementation of a
binary search tree is examined, followed by a discussion of how the balance in the
tree nodes is key to its performance. That leads to exploring AVL and red/black
implementations of binary search trees.

Chapter 21 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap
sort is used as an example of its usefulness as well. Both linked and array-based
implementations are explored.

Chapter 22 (Sets and Maps) explores these two types of collections and their
importance to the Java Collections API.

Chapter 23 (Multi-way Search Trees) is a natural extension of the discussion of
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are
examined and implementation options are discussed.

Chapter 24 (Graphs) explores the concept of undirected and directed graphs
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Chapter 25 (Databases) explores the concept of databases and their manage-
ment, and discusses the basics of SQL queries. It then explores the techniques for

A01_LEWI5976_05_SE_FM.indd 10 14/02/19 9:09 PM

	 PREFACE 	 xi

establishing a connection between a Java program and a database, and the API
used to interact with it.

Supplements
The following student resources are available for this book:

•	 Source code for all programs presented in the book
•	 VideoNotes that explore select topics from the book

Resources can be accessed at www.pearson.com/lewis

The following instructor resources can be found at Pearson Education’s Instructor
Resource Center:

•	 Solutions for select exercises and programming projects in the book
•	 PowerPoint slides for the presentation of the book content
•	 Test bank

To obtain access, please visit www.pearsonhighered.com/irc or contact your local
Pearson Education sales representative.

A01_LEWI5976_05_SE_FM.indd 11 14/02/19 9:09 PM

xiii

Preface� vii
Credits� xxix
VideoNotes� xxxi
Chapter 1	 Introduction	 1

1.1	 The Java Programming Language	 2
A Java Program	 3
Comments	 5
Identifiers and Reserved Words	 7
White Space	 9

1.2	 Program Development	 11
Programming Language Levels	 11
Editors, Compilers, and Interpreters	 13
Development Environments	 15
Syntax and Semantics	 16
Errors	 17

1.3	 Problem Solving	 18

1.4	 Software Development Activities	 20

1.5	 Object-Oriented Programming	 21
Object-Oriented Software Principles	 22

Chapter 2	Data and Expressions	 33
2.1	 Character Strings	 34

The print and println Methods	 34
String Concatenation	 36
Escape Sequences	 40

2.2	 Variables and Assignment	 41
Variables	 41
The Assignment Statement	 44
Constants	 46

Contents

A01_LEWI5976_05_SE_FM.indd 13 14/02/19 9:09 PM

xiv	 CONTENTS

2.3	 Primitive Data Types	 47
Integers and Floating Points	 47
Characters	 48
Booleans	 50

2.4	 Expressions	 51
Arithmetic Operators	 51
Operator Precedence	 52
Increment and Decrement Operators	 56
Assignment Operators	 57

2.5	 Data Conversion	 58
Conversion Techniques	 60

2.6	 Reading Input Data	 61
The Scanner Class	 61

Chapter 3	Using Classes and Objects	 75
3.1	 Creating Objects	 76

Aliases	 78

3.2	 The String Class	 80

3.3	 Packages	 83
The import Declaration	 84

3.4	 The Random Class	 86

3.5	 The Math Class	 89

3.6	 Formatting Output	 92
The NumberFormat Class	 92
The DecimalFormat Class	 94
The printf Method	 96

3.7 	 Enumerated Types	 97

3.8 	 Wrapper Classes	 100
Autoboxing	 102

Chapter 4	Conditionals and Loops	 111
4.1	 Boolean Expressions	 112

Equality and Relational Operators	 113
Logical Operators	 114

A01_LEWI5976_05_SE_FM.indd 14 14/02/19 9:09 PM

	 CONTENTS 	 xv

4.2	 The if Statement	 116
The if-else Statement	 119
Using Block Statements	 121
The Conditional Operator	 124
Nested if Statements	 125

4.3 	 Comparing Data	 127
Comparing Floats	 127
Comparing Characters	 127
Comparing Objects	 128

4.4 	 The switch Statement	 130

4.5 	 The while Statement	 134
Infinite Loops	 140
Nested Loops	 141
Other Loop Controls	 144

4.6 	 Iterators	 145
Reading Text Files	 146

4.7 	 The do Statement	 148

4.8 	 The for Statement	 151
Iterators and for Loops	 156
Comparing Loops	 157

Chapter 5	Writing Classes	 169
5.1 	 Classes and Objects Revisited	 170

Identifying Classes and Objects	 171
Assigning Responsibilities	 173

5.2 	 Anatomy of a Class	 173
Instance Data	 178
UML Class Diagrams	 179

5.3 	 Encapsulation	 181
Visibility Modifiers	 182
Accessors and Mutators	 183

5.4 	 Anatomy of a Method	 188
The return Statement	 194
Parameters	 196
Local Data	 197
Constructors Revisited	 198

A01_LEWI5976_05_SE_FM.indd 15 14/02/19 9:09 PM

xvi	 CONTENTS

5.5 	 Static Class Members	 199
Static Variables	 199
Static Methods	 200

5.6 	 Class Relationships	 203
Dependency	 203
Dependencies among Objects of the Same Class	 204
Aggregation	 206
The this Reference	 211

5.7 	 Method Design	 212
Method Decomposition	 213
Method Parameters Revisited	 218

5.8 	 Method Overloading	 223

5.9 	 Testing	 224
Reviews	 225
Defect Testing	 226
Unit Testing	 227
Integration Testing	 228
System Testing	 228
Test-Driven Development	 228

5.10 	 Debugging	 229
Simple Debugging with print Statements	 230
Debugging Concepts	 230

Chapter 6	Graphical User Interfaces	 245
6.1 	 Introduction to JavaFX	 246

GUI Elements	 249
Alternate Ways to Specify Event Handlers	 252
Determining Event Sources	 253

6.2 	 Other GUI Controls	 256
Text Fields	 256
Check Boxes	 259
Radio Buttons	 263
Color and Date Pickers	 267

6.3 	 Mouse and Key Events	 270
Mouse Events	 271
Key Events	 276

A01_LEWI5976_05_SE_FM.indd 16 14/02/19 9:09 PM

	 CONTENTS 	 xvii

6.4 	 Dialog Boxes	 279
File Choosers	 283

6.5 	 JavaFX Properties	 286
Change Listeners	 289
Sliders	 292
Spinners	 295

6.6 	 Tool Tips and Disabling Controls	 299

Chapter 7	Arrays	 313
7.1 	 Array Elements	 314

7.2 	 Declaring and Using Arrays	 315
Bounds Checking	 318
Alternative Array Syntax	 323
Initializer Lists	 324
Arrays as Parameters	 325

7.3 	 Arrays of Objects	 325

7.4 	 Command-Line Arguments	 335

7.5 	 Variable-Length Parameter Lists	 337

7.6 	 Two-Dimensional Arrays	 341
Multidimensional Arrays	 344

7.7 	 Arrays and GUIs	 346
An Array of Color Objects	 346
Choice Boxes	 349

Chapter 8	 Inheritance	 361
8.1 	 Creating Subclasses	 362

The protected Modifier	 367
The super Reference	 368
Multiple Inheritance	 372

8.2 	 Overriding Methods	 373
Shadowing Variables	 376

8.3 	 Class Hierarchies	 376
The Object Class	 377
Abstract Classes	 379

A01_LEWI5976_05_SE_FM.indd 17 14/02/19 9:09 PM

xviii	 CONTENTS

8.4 	 Visibility	 381

8.5 	 Designing for Inheritance	 383
Restricting Inheritance	 384

8.6 	 Inheritance in JavaFX	 385

Chapter 9	 Polymorphism	 395
9.1 	 Dynamic Binding	 396

9.2 	 Polymorphism via Inheritance	 397

9.3 	 Interfaces	 409
Interface Hierarchies	 414
The Comparable Interface	 415
The Iterator Interface	 415

9.4 	 Polymorphism via Interfaces	 416

Chapter 10 Exceptions	 425
10.1 	 Exception Handling	 426

10.2 	 Uncaught Exceptions	 427

10.3 	 The try-catch Statement	 428
The finally Clause	 431

10.4 	 Exception Propagation	 432

10.5 	 The Exception Class Hierarchy	 435
Checked and Unchecked Exceptions	 439

10.6 	 I/O Exceptions	 439

Chapter 11 Analysis of Algorithms	 449
11.1 	 Algorithm Efficiency	 450

11.2 	 Growth Functions and Big-Oh Notation	 451

11.3 	 Comparing Growth Functions	 453

11.4 	 Determining Time Complexity	 455
Analyzing Loop Execution	 455
Nested Loops	 456
Method Calls	 457

A01_LEWI5976_05_SE_FM.indd 18 14/02/19 9:09 PM

	 CONTENTS 	 xix

Chapter12 Introduction to Collections—Stacks	 463
12.1 	 Collections	 464

Abstract Data Types	 465
The Java Collections API	 467

12.2 	 A Stack Collection	 467

12.3 	 Crucial OO Concepts	 469
Inheritance and Polymorphism	 470
Generics	 471

12.4 	 Using Stacks: Evaluating Postfix Expressions	 472
Javadoc	 480

12.5 	 Exceptions	 481

12.6 	 A Stack ADT	 482

12.7 	 Implementing a Stack: With Arrays	 485
Managing Capacity	 486

12.8 	 The ArrayStack Class	 487
The Constructors	 488
The push Operation	 490
The pop Operation	 492
The peek Operation	 493
Other Operations	 493
The EmptyCollectionException Class	 494
Other Implementations	 495

Chapter 13 Linked Structures—Stacks	 503
13.1 	 References as Links	 504

13.2 	 Managing Linked Lists	 506
Accessing Elements	 506
Inserting Nodes	 507
Deleting Nodes	 508

13.3 	 Elements without Links	 509
Doubly Linked Lists	 509

13.4 	 Stacks in the Java API	 510

13.5 	 Using Stacks: Traversing a Maze	 511

A01_LEWI5976_05_SE_FM.indd 19 14/02/19 9:09 PM

xx	 CONTENTS

13.6 	 Implementing a Stack: With Links	 520
The LinkedStack Class	 520
The push Operation	 524
The pop Operation	 526
Other Operations	 527

Chapter 14 Queues	 533
14.1 	 A Conceptual Queue	 534

14.2 	 Queues in the Java API	 535

14.3 	 Using Queues: Code Keys	 536

14.4 	 Using Queues: Ticket Counter Simulation	 540

14.5 	 A Queue ADT	 545

14.6 	 A Linked Implementation of a Queue	 546
The enqueue Operation	 548
The dequeue Operation	 550
Other Operations	 551

14.7 	 Implementing Queues: With Arrays	 552
The enqueue Operation	 556
The dequeue Operation	 558
Other Operations	 559

14.8 	 Double-Ended Queues (Dequeue)	 559

Chapter 15 Lists	 565
15.1 	 A List Collection	 566

15.2 	 Lists in the Java Collections API	 568

15.3 	 Using Unordered Lists: Program of Study	 569

15.4 	 Using Indexed Lists: Josephus	 579

15.5 	 A List ADT	 581
Adding Elements to a List	 582

15.6 	 Implementing Lists with Arrays	 587
The remove Operation	 589
The contains Operation	 591
The add Operation for an Ordered List	 592

A01_LEWI5976_05_SE_FM.indd 20 14/02/19 9:09 PM

	 CONTENTS 	 xxi

Operations Particular to Unordered Lists	 593
The addAfter Operation for an

Unordered List	 593

15.7 	 Implementing Lists with Links	 594
The remove Operation	 595

15.8 	 Lists in JavaFX	 597
Observable List	 597
Sorted List	 597

Chapter 16 Iterators	 605
16.1 	 What’s an Iterator?	 606

Other Iterator Issues	 608

16.2 	 Using Iterators: Program of Study Revisited	 609
Printing Certain Courses	 613
Removing Courses	 614

16.3 	 Implementing Iterators: With Arrays	 615

16.4 	 Implementing Iterators: With Links	 617

Chapter 17 Recursion	 623
17.1 	 Recursive Thinking	 624

Infinite Recursion	 624
Recursion in Math	 625

17.2 	 Recursive Programming	 626
Recursion versus Iteration	 629
Direct versus Indirect Recursion	 629

17.3 	 Using Recursion	 630
Traversing a Maze	 630
The Towers of Hanoi	 638

17.4 	 Analyzing Recursive Algorithms	 643

Chapter 18 Searching and Sorting	 651
18.1 	 Searching	 652

Static Methods	 653
Generic Methods	 653
Linear Search	 654

A01_LEWI5976_05_SE_FM.indd 21 14/02/19 9:09 PM

xxii	 CONTENTS

Binary Search	 656
Comparing Search Algorithms	 658

18.2 	 Sorting	 659
Selection Sort	 662
Insertion Sort	 664
Bubble Sort	 666
Quick Sort	 668
Merge Sort	 672

18.3 	 Radix Sort	 675

18.4 	 A Different Way to Sort—Comparator	 679

Chapter 19 Trees	 693
19.1 	 Trees	 694

Tree Classifications	 695

19.2 	 Strategies for Implementing Trees	 697
Computational Strategy for Array

Implementation of Trees	 697
Simulated Link Strategy for Array

Implementation of Trees	 697
Analysis of Trees	 699

19.3 	 Tree Traversals	 700
Preorder Traversal	 700
Inorder Traversal	 701
Postorder Traversal	 701
Level-Order Traversal	 702

19.4 	 A Binary Tree ADT	 703

19.5 	 Using Binary Trees: Expression Trees	 707

19.6 	 A Back Pain Analyzer	 719

19.7 	 Implementing Binary Trees with Links	 724
The find Method	 728
The iteratorInOrder Method	 730

Chapter 20 Binary Search Trees	 737
20.1 	 Binary Search Trees	 738

Adding an Element to a Binary Search Tree	 739

A01_LEWI5976_05_SE_FM.indd 22 14/02/19 9:09 PM

	 CONTENTS 	 xxiii

Removing an Element from a Binary
Search Tree	 741

20.2 	 Implementing a Binary Search Tree	 743

20.3 	 Implementing Binary Search Trees: With Links	 745
The addElement Operation	 746
The removeElement Operation	 748
The removeAllOccurrences Operation	 752
The removeMin Operation	 753
Implementing Binary Search Trees:

With Arrays	 755

20.4 	 Using Binary Search Trees: Implementing
Ordered Lists	 755
Analysis of the BinarySearchTreeList

Implementation	 758

20.5 	 Balanced Binary Search Trees	 759
Right Rotation	 760
Left Rotation	 761
Rightleft Rotation	 762
Leftright Rotation	 762

20.6 	 Implementing Binary Search Trees: AVL Trees	 762
Right Rotation in an AVL Tree	 763
Left Rotation in an AVL Tree	 764
Rightleft Rotation in an AVL Tree	 764
Leftright Rotation in an AVL Tree	 765

20.7 	 Implementing Binary Search Trees:
Red/Black Trees	 766
Insertion into a Red/Black Tree	 766
Element Removal from a Red/Black Tree	 770

Chapter 21 Heaps and Priority Queues	 779
21.1 	 A Heap	 780

The addElement Operation	 782
The removeMin Operation	 783
The findMin Operation	 784

21.2 	 Using Heaps: Priority Queues	 784

A01_LEWI5976_05_SE_FM.indd 23 14/02/19 9:09 PM

xxiv	 CONTENTS

21.3 	 Implementing Heaps: With Links	 788
The addElement Operation	 788
The removeMin Operation	 792
The findMin Operation	 795

21.4 	 Implementing Heaps: With Arrays	 795
The addElement Operation	 797
The removeMin Operation	 798
The findMin Operation	 800

21.5 	 Using Heaps: Heap Sort	 800

Chapter 22 Sets and Maps	 807
22.1 	 Set and Map Collections	 808

22.2 	 Sets and Maps in the Java API	 808

22.3 	 Using Sets: Domain Blocker	 811

22.4 	 Using Maps: Product Sales	 814

22.5 	 Using Maps: User Management	 818

22.6 	 Implementing Sets and Maps Using Trees	 823

22.7 	 Implementing Sets and Maps Using Hashing	 823

Chapter 23 Multi-way Search Trees	 831
23.1 	 Combining Tree Concepts	 832

23.2 	 2-3 Trees	 832
Inserting Elements into a 2-3 Tree	 833
Removing Elements from a 2-3 Tree	 835

23.3 	 2-4 Trees	 838

23.4 	 B-Trees	 840
B*-Trees	 841
B+-Trees	 841
Analysis of B-Trees	 842

23.5 	 Implementation Strategies for B-Trees	 842

A01_LEWI5976_05_SE_FM.indd 24 14/02/19 9:09 PM

	 CONTENTS 	 xxv

Chapter 24 Graphs	 849
24.1 	 Undirected Graphs	 850

24.2 	 Directed Graphs	 851

24.3 	 Networks	 853

24.4 	 Common Graph Algorithms	 854
Traversals	 854
Testing for Connectivity	 858
Minimum Spanning Trees	 860
Determining the Shortest Path	 863

24.5 	 Strategies for Implementing Graphs	 863
Adjacency Lists	 864
Adjacency Matrices	 864

24.6 	 Implementing Undirected Graphs with an
Adjacency Matrix	 865
The addEdge Method	 870
The addVertex Method	 870
The expandCapacity Method	 871
Other Methods	 872

Chapter 25 Databases	 879
25.1 	 Introduction to Databases	 880

25.2 	 Establishing a Connection to a Database	 882
Obtaining a Database Driver	 882

25.3 	 Creating and Altering Database Tables	 885
Create Table	 885
Alter Table	 886
Drop Column	 887

25.4 	 Querying the Database	 887
Show Columns	 888

25.5 	 Inserting, Viewing, and Updating Data	 890
Insert	 891

A01_LEWI5976_05_SE_FM.indd 25 14/02/19 9:09 PM

xxvi	 CONTENTS

SELECT ... FROM	 891
Update	 896

25.6 	 Deleting Data and Database Tables	 897
Deleting Data	 897
Deleting Database Tables	 898

Appendix A Glossary� 903

Appendix B Number Systems� 937
Place Value� 938

Bases Higher Than 10� 939

Conversions� 940

Shortcut Conversions� 943

Appendix C	The Unicode Character Set� 949

Appendix D	Java Operators� 953
Java Bitwise Operators� 955

Appendix E	Java Modifiers� 959
Java Visibility Modifiers� 960

A Visibility Example� 960

Other Java Modifiers� 961

Appendix F	JavaFX Graphics� 963
Coordinate Systems� 964

Representing Colors� 964

Basic Shapes� 965

Arcs� 970

A01_LEWI5976_05_SE_FM.indd 26 14/02/19 9:09 PM

	 CONTENTS 	 xxvii

Images� 974

Fonts� 976

Graphic Transformations� 979
Translation� 979
Scaling� 980
Rotation� 981
Shearing� 982

Polygons and Polylines� 982

Appendix G	JavaFX Scene Builder� 987
Hello Moon� 988

Handling Events in JavaFX Scene Builder� 993

Appendix H	Regular Expressions� 997

Appendix I	 Hashing� 999
I.1 A Hashing� 1000

I.2 Hashing Functions� 1001
The Division Method� 1002
The Folding Method� 1002
The Mid-Square Method� 1003
The Radix Transformation Method� 1003
The Digit Analysis Method� 1003
The Length-Dependent Method� 1004
Hashing Functions in the Java Language� 1004

I.3 Resolving Collisions� 1004
Chaining� 1005
Open Addressing� 1006

I.4 Deleting Elements from a Hash Table� 1009
Deleting from a Chained

Implementation� 1009
Deleting from an Open Addressing

Implementation� 1010

A01_LEWI5976_05_SE_FM.indd 27 14/02/19 9:09 PM

xxviii	 CONTENTS

I.5 Hash Tables in the Java Collections API� 1011
The Hashtable Class� 1011
The HashSet Class� 1013
The HashMap Class� 1013
The IdentityHashMap Class� 1014

I.6 The WeakHashMap Class� 1015
LinkedHashSet and LinkedHashMap� 1016

Appendix J	 Java Syntax	� 1023

Index � 1037

A01_LEWI5976_05_SE_FM.indd 28 14/02/19 9:09 PM

xxix

Cover: Liudmila Habrus/123RF
Chapter 1 page 2: Reference: Java is a relatively new programming language

compared to many others. It was developed in the early 1990s by James Gosling at
Sun Microsystems. Java was released to the public in 1995 and has gained tremen-
dous popularity since “The History of Java Technology” Oracle Corporation. 1995.
Accessed at http://www.oracle.com/technetwork/java/javase/overview/javahistory-
index-198355.html

Chapter 1 page 15: Excerpt: A research group at Auburn University has devel-
oped jGRASP, a free Java IDE that is included on the CD that accompanies this
book. It can also be downloaded from www.jgrasp.org. “jGRASP” is developed
by the Department of Computer Science and Software Engineering in the Samuel
Ginn College of Engineering at Auburn University.

Chapter 1 page 20: Reference: The programming language Simula, developed
in the 1960s, had many characteristics that define the modern object-oriented ap-
proach to software development. Nygaard, Kristen, Myhrhaug, Bjørn, and Dahl,
Ole-Johan. “Simula. Common Base Language.” Norwegian Computing Center.
1970. Accessed at http://www.nr.no/

Chapter 4: Excerpt: The Twelve Days of Christmas. “Twelve Days of Christ-
mas.” Mirth Without Mischief. 1780.

Chapter 11: Text: Another way of looking at the effect of algorithm complexity
was proposed by Aho, Hopcroft, and Ullman. Aho, A.V., J.E. Hopcroft, and
J.D. Ullman. “The Design and Analysis of Computer Algorithms.” Addison-Wesley.
1974.

Chapter 20: Text: Adel’son-Vel’skii and Landis developed a method called AVL
trees that is a variation on this theme. For each node in the tree, we will keep track
of the height of the left and right subtrees. Adelson-Velskii, Georgii and Evengii
Landis. “An Algorithm for the Organization of Information.” 1962.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRE-
SENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CON-
TAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS
PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS
AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT WAR-
RANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLI-
ERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH

Credits

A01_LEWI5976_05_SE_FM.indd 29 14/02/19 9:09 PM

xxx	 CREDITS

REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND
CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED
OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RE-
SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN AC-
TION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFOR-
MANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN
COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY
MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL
SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE
VERSION SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF
THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUN-
TRIES. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILI-
ATED WITH THE MICROSOFT CORPORATION.

A01_LEWI5976_05_SE_FM.indd 30 14/02/19 9:09 PM

VideoNote

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Overview of program elements, page 4
Comparison of Java IDEs, page 16
Examples of various error types, page 18

Chapter 2 Example using strings and escape sequences, page 40
Review of primitive data and expressions, page 52
Example using the Scanner class, page 63

Chapter 3 Creating objects, page 77
Example using the Random and Math classes, page 89

Chapter 4 Examples using conditionals, page 123
Examples using while loops, page 138
Examples using for loops, page 155

Chapter 5 Dissecting the Die class, page 178
Discussion of the Account class, page 194

Chapter 7 Overview of arrays, page 315
Discussion of the LetterCount example, page 323

Chapter 8 Overview of inheritance, page 363
Example using a class hierarchy, page 378

Chapter 9 Exploring the Firm program, page 404

Chapter 10 Proper exception handling, page 432

Chapter 12 An overview of the ArrayStack implementation, page 488

Chapter 13 Using a stack to solve a maze, page 512

Chapter 14 An array-based queue implementation, page 552

Chapter 15 List categories, page 566

Chapter 17 Analyzing recursive algorithms, page 644

Chapter 18 Demonstration of a binary search, page 657

Chapter 19 Demonstration of the four basic tree traversals, page 703

Chapter 20 Demonstration of the four basic tree rotations, page 763

Chapter 21 Demonstration of a heap sort on an array, page 801

Chapter 22 A comparison of sets and maps, page 808

Chapter 23 Inserting elements into, and removing elements from, a 2-3
tree, page 835

Chapter 24 Illustration of depth-first and breadth-first traversals of a graph,
page 855

xxxi

A01_LEWI5976_05_SE_FM.indd 31 14/02/19 9:09 PM

1

1
This text is about writing well-designed software. We

begin by examining a very basic Java program and using it

to explore some initial programming concepts. We then lay

the groundwork for software development on a larger scale,

exploring the foundations of problem solving, the activi-

ties involved in software development, and the principles of

object-oriented programming.

C H A P T E R O B J E C T I V E S
■■ Introduce the Java programming language.

■■ Describe the steps involved in program compilation and execution.

■■ Explore the issues related to problem solving in general.

■■ Discuss the activities involved in the software development
process.

■■ Present an overview of object-oriented principles.

Introduction 1

M01_LEWI5976_05_SE_C01.indd 1 08/02/19 1:00 AM

2	 CHAPTER 1   Introduction

1.1  The Java Programming Language

A computer is made up of hardware and software. The hardware components of
a computer system are the physical, tangible pieces that support the computing
effort. They include chips, boxes, wires, keyboards, speakers, disks, cables, print-
ers, and so on. The hardware is essentially useless without instructions to tell it
what to do. A program is a series of instructions that the hardware executes one
after another. Programs are sometimes called applications. Software consists of
programs and the data those programs use. Software is the intangible counterpart
to the physical hardware components. Together, they form a tool that we can use
to solve problems.

A program is written in a particular programming language that
uses specific words and symbols to express the problem solution. A
programming language defines a set of rules that determines exactly
how a programmer can combine the words and symbols of the lan-
guage into programming statements, which are the instructions that
are carried out when the program is executed.

Since the inception of computers, many programming languages have been
created. We use the Java language in this text to demonstrate various programming
concepts and techniques. Although our main goal is to learn these underlying soft-
ware development concepts, an important side effect will be to become proficient
in the development of Java programs.

Java is a relatively new programming language compared to many others. It
was developed in the early 1990s by James Gosling at Sun Microsystems. Java was
introduced to the public in 1995 and has gained tremendous popularity since.

Java has undergone various changes since its creation. The most recent Java
technology is generally referred to as the Java 2 Platform, which is organized into
three major groups:

■■ Java 2 Platform, Standard Edition (J2SE)

■■ Java 2 Platform, Enterprise Edition (J2EE)

■■ Java 2 Platform, Micro Edition (J2ME)

This text focuses on the Standard Edition, which, as the name implies, is the
mainstream version of the language and associated tools. Furthermore, this book is
consistent with any recent versions of Java, through Java 11.

Some parts of early Java technologies have been deprecated, which means they
are considered old-fashioned and should not be used. When it is important, we
point out deprecated elements and discuss the preferred alternatives.

Java is an object-oriented programming language. Objects are the fundamen-
tal elements that make up a program. The principles of object-oriented software

KEY CONCEPT
A computer system consists of
hardware and software that work in
concert to help us solve problems.

M01_LEWI5976_05_SE_C01.indd 2 08/02/19 1:00 AM

	 1.1   The Java Programming Language	 3

development are the cornerstone of this text. We explore object-
oriented programming concepts later in this chapter and throughout
the rest of the text.

The Java language is accompanied by a library of extra software
that we can use when developing programs. This software is referred
to as the Java API, which stands for Application Programmer Interfaces, or simply
the standard class library. It provides the ability to create graphics, communicate
over networks, and interact with databases, among many other features. The Java
API is huge and quite versatile. Although we won’t be able to cover all aspects of the
library, we will explore many of them.

Java is used in commercial environments all over the world. It is one of the
fastest-growing programming technologies of all time. Thus it is not only a good
language in which to learn programming concepts but also a practical language
that will serve you well in the future.

A Java Program
Let’s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This particular program prints a quotation
from Abraham Lincoln. The output is shown below the program listing.

All Java applications are similar in basic structure. Despite its small size and
simple purpose, this program contains several important features. Let’s carefully
dissect it and examine its pieces.

The first few lines of the program are comments, which start with the // sym-
bols and continue to the end of the line. Comments don’t affect what the pro-
gram does but are included to make the program easier to understand by humans.
Programmers can and should include comments as needed throughout a program
to clearly identify the purpose of the program and describe any special process-
ing. Any written comments or documents, including a user’s guide and technical
references, are called documentation. Comments included in a program are called
inline documentation.

The rest of the program is a class definition. This class is called
Lincoln, although we could have named it just about anything we
wished. The class definition runs from the first opening brace ({) to
the final closing brace (}) on the last line of the program. All Java
programs are defined using class definitions.

Inside the class definition are some more comments describing the purpose of
the main method, which is defined directly below the comments. A method is a
group of programming statements that is given a name. In this case, the name of
the method is main and it contains only two programming statements. Like a class
definition, a method is delimited by braces.

KEY CONCEPT
This text focuses on the principles of
object-oriented programming.

KEY CONCEPT
Comments do not affect a program’s
processing; instead, they serve to
facilitate human comprehension.

M01_LEWI5976_05_SE_C01.indd 3 08/02/19 1:00 AM

